

Dr Nicholas Allott nick@nqminds.com

SECURE IOT GATEWAYS

Highlighting the industry challenges, and identifying the collaborative innovation needed to address them

Device security good

Gateway security better

complimentary/more practical/future proof

Everything to follow is framed by ManySecured tech stack (open sourced/ emerging standard)

The requirements however standalone and represent good/next practice

IN THE CROSSHAIRS OF CYBER CRIMINALS AND TARGETED ATTACK GROUPS.

While worms and bots continued to account for the vast majority of Internet of Things (IoT) attacks, in 2018 we saw a new breed of threat emerge as targeted attack actors displayed an interest in IoT as an infection vector.

The overall volume of IoT attacks remained high in 2018 and consistent (-0.2 percent) compared to 2017. Routers and connected cameras were the most infected devices and accounted for 75 and 15 percent of the attacks respectively. It's unsurprising that routers were the most targeted devices given their accessibility from the internet. They're also attractive as they provide an effective jumping-off point for attackers.

The notorious Mirai distributed denial of service (DDoS) worm remained an active threat and, with 16 percent of the attacks, was the third most common IoT threat in 2018. Mirai is constantly evolving and variants use up to 16 different exploits, persistently adding new exploits to increase the success rate for infection, as devices often remain unpatched. The worm also expanded its target scope by going after unpatched Linux servers. Another noticeable trend was the increase in attacks against industrial control systems (ICS). The Thrip group went after satellites, and Triton attacked industrial safety systems, leaving them vulnerable to sabotage or extortion attacks. Any computing device is a potential target.

The emergence of VPNFilter in 2018 represented an evolution of IoT threats. VPNFilter was the first widespread persistent IoT threat, with its ability to survive a reboot making it very difficult to remove. With an array of potent payloads at its disposal, such as man in the middle (MitM) attacks, data exfiltration, credential theft, and interception of SCADA communications, VPNFilter was a departure from traditional IoT threat activity such as DDoS and coin mining. It also includes a destructive capability which can "brick," or wipe a device at the attackers' command, should they wish to destroy evidence. VPNFilter is the work of a skilled and well-resourced threat actor and demonstrates how IoT devices are now facing attack from many fronts.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

"ROUTERS ACCOUNT FOR 75% OF INFECTED IOT DEVICES"

Router Focus

- Attack target
- Low cost scalable
- Geographically remote attack
- Line of defence
- Attack vector
- Visibility of activity
- Ability to impact/contain

Challenges What's so difficult

CHALLENGE 1 Securing intranet for browsers

The issue

You cant connect to <u>http://192.168.0.1</u> securely (or https)

Which is problematic

Because almost everyone want to configure your IOT device (and your router) that way

The alternative

Is a new application for every device which is bad for so many different reasons.

Learn about the BT Hub Manager

Alongside the launch of our new BT Smart Hub 2, we've redesigned the Hub Manager. It's now even easier to manage the Hub's settings and to get the best wi-fi set-up. It's also easy to see the Hub Manager across all devices.

How to open the Hub Manager

1. Open a new web browser 2. Type **192.168.1.254** into the address bar

3. This will open the Hub Manager

CHALLENGE 2

Evaluating trustworthiness of a device

What are you

What's at the end of this IP address ?

Are you behaving

Is the device doing what it should do

What can I do about it

Containment and intervention

CHALLENGE N++

Everything else

Heterogenous networks

IOT networks are evolving and diverse

No single source of truth

Ability to reason under uncertainty

Devices live longer then manufactures

Legacy support and operational issues

A Theory of types Creating the glue (database foreign key)

How to survive in the woods?

Device instance

Physical Observable evets Ephemeral

Device type

Conceptual Statistical descriptors Perpetual

ManySecured Architecture A candidate blueprint

Operational Deployment

What's already out there ...

Manufacturer Usage Description

What is it

Method of describing different device types and there expected "least privilege behaviour. Method of security publishing, discovering and binding these descriptions to induvial devices. Can be used to enforce constraints on a router

Considerations

- Insecure when using DHCP (can be spoofed)
- Bootstrap problem (fax machine) when creating community
- Designed for new (compliant) devices

🖈 matter

MATTER

What is it

Zigbee focussed method of creating interoperable IOT devices/services with a strongg notion of device commissioning

Considerations

- How truly interoperable are the interfaces
- Where does "user" authorisation sit
- Potential source of type identifiers and instance identifies

ALLIANCE

FIDO

What is it

Device onboarding protocol Has strong device type identity

Considerations

• A solution for

CycloneDX

Software Bill of Materials

What is it Device onboarding protocol

Considerations

Needs a VEX to be useful

NVD Vulnerability Databases

What is it

List of publicly disclosed vulnerabilities There are many such databases

Considerations

What is the granularity

Threat sharing

What is it

Behaviourally defined threat sharing List of suspicious destination points

Considerations

False positives

Building blocks What's so difficult

D3: IMPLEMENTATION

Flexible secure data structures

	Signed by	
DevType ID	Unique ID for device type	
Manufacturer	Domain name of originating manufacturer	
Model number	Finest grained, unique model number	
Model number extra	Secondary model number	
ID Link	Unique persistent URI (hosting descriptor)	
Manufacture link	Usable model link for end users	
Parent type	(optional) parent type (DevType ID)	
Terminal type	Is this terminal type	
Description	Friendly description of type	

TAG ID	Tag ID	Signed by
Friendly name	name	
Description	Link to download firmware	
DevType ID	Link to (DevType ID)	

Verifiable Credentials Data Model 1.0 https://www.w3.org/TR/vc-data-model/

			Signed by
	Firmware ID	Unique ID for firmware	
	Version no	Version number for firmware	
	Link		
	Hash	Hash of firmware content	
	Previous firmware	Which firmware this supersede	S
	DevType ID	Link to (DevType ID)	
	Parent type	(optional) parent type	
	Description	Friendly description of firmware	5

		Signed by	
	Behaviour ID	Tag ID	
		List of allowed network behaviours TBD	
	DevType ID	Link to (DevType ID)	

D3: IMPLEMENTATION

Anticipated workflow

Crowd sourced

D3: USE CASES

Establishing a real need

UC1: Type Assertion & hierarchy

Assemble a model of types to reason from

UC2: Recognise a type

Bind instance to a type: hard methods (certificates), soft methods (recognisers), human methods (people doing stuff)

UC3: Define least privilege behaviour

Use the MUD stuff

UC4: Infer stochastic behaviour

Observe an instance of assemble all behaviours of declared types

UC4: Infer risk from type

Using bindings of type to CVEs to triage risk. And use other information sources

UC5: Infer risk from instance behaviour

User MISP (or other) to infer risk on the single instance What does this tell you by type? Possible vulnerability

UC6: Onboard a device

Auto enrol a device if "sufficient" evidence presented

UC7: On board a browser

Enrol a device certificate to a browser for a more secure experience

Operational Deployment

Summary

Secure Gateway Next Steps

Status

Good next practice for gateway security Integrated existing systems in a useful way Foundation for "useful" collaboration Practical and concrete

Get involved

Specifications Implementations Data gathering/sharing: Virtual IOT Cyber Lab Website: https://manysecured.net/

Specifications

https://specs.manysecured.net/

Specification source:

https://github.com/TechWorksHub/ManySecured-WGs

Open source gateway reference:

https://github.com/nqminds/edgesec/issues

Email

info@manysecured.net

nquiringminds

Dr Nicholas Allott nick@nqminds.com

Backup slides

Operational Deployment

Operational Deployment

Additional Information

Different Deployments

How to integrate

Practical use cases Value added router features

Counterfeiting

Stop device spoofing

How it works

Spotting a device register in two places or to two organisations at the same time.

More than MAC address or IP address, looks at deeper identity can check with an authorise source

Integration points

With either manufacturer or some point in the purchasing/provisioning chain (lifecycle)

Updating Ensure devices are updated

How it works

The gateway determines current firmware on this device instance, and compares against available firmware for this device type

Integration points

Infer current firmware (auto scan, provisioning event, RATS, SBOM)

Declaration of official device type to firmware bindings Integrity checks

Onboarding

Ensure devices are updated

How it works

Automatically provision network credentials

Selectively on board:

- Recognised device ID
- Purchase device
- Provisioned device
- Attestable device instance (integrity)
- Tested device instance (compliance)
- Tested device type (type compliance)etc

Integration points

All....

Offboarding

Ensure devices are updated

How it works

Remove the device when evidence, implies that no longer suitable

- Resold
- Counterfeit
- Irregular activity

Integration points

Purchase voucher system Remote "assurance" tests

Vuln Inferencing

Auto detect vulnerabilities on connected devices

How it works

From this device instance determine the device type and from that device type identify disclosed vulnerabilities

Integration points

Device type identification process(es) CVE database sources (with device type reference)

How it works

Like version 1 – but using SBOM declarations to harvest larger vulnerability list

Vuln Inferencing2

Use SBOM to infer vulnerabilities

Integration points

Device type->SBOM packages SBOM packages ->CVE

Vuln Reporting

Declare new vulnerability against a device type

How it works

Using automated or manual methods identify a vulnerability against an instance. If found register against the device type

Integration points

Device instance to device type recogniser CVE with device type references

Suspicious activity inferencing

Flag a device based on its suspicious activity

How it works

Monitor device activity and pattern match againstt known "bad patterns" or "bad destinations".

Suspicious activity frequently register against a type may help identify a system vulnerability

Integration points

MISP database or similar

Least Privilege Behaviour Reporting

Create an allowed list description of permissible network behaviour

How it works

Manufacture, third party of monitoring system builds an "allowed list" model

Integration points

Publish point for behaviours MUD specification

Least Privilege Behaviour Enforcement

Contain (or flag) a device based on its usual behaviour

How it works

From device instance determine device type From device type download behaviour Enforce/flag behaviour at gateway

Integration points

MUD publisher

Stochastic Behaviour Reporting

Create a statistical /ML model of behaviour

How it works

Observe individual device instances and aggregate instance bedsores across device type

(its also possible to benchmark and untyped single instance)

Integration points

Reliable publisher of models

Stochastic Behaviour Enforcement

Contain/flag device based on anomalous behaviour

How it works

Download model from type database. Enforce model at the gateway (gateway controller)

Integration points

Trusted published of models

Declare Gateway Security Features

Make remotely attestable claims of gateway security features

How it works

Allow connected IOT device and connecting networking equipment to react to discernible security features

Integration points

IETF RATS Secure boot CHERI/Morello Rust Kernel SBOM GCERT

Infer IOT device Security Features

Help gateway determine security features of connected IOT devices

How it works

Gateway probes each device and asks it to declare its security credentials.

This information can inform how the gateway treats the device.

Integration points

IETF RATS Secure boot CHERI/Morello Rust Kernel SBOM IOTSF Assurance