IXP Scrubber: Learning from Blackholing Traffic for ML-Driven DDoS Detection at Scale

Matthias Wichtlhuber* | Eric Strehle+ | Daniel Kopp* | Lars Prepens* | Stefan Stegmüller* | Alina Rubina* | *Christoph Dietzel** | Oliver Hohlfeld+ *DE-CIX | +Brandenburg University of Technology, Cottbus

rnd-team@de-cix.net | oliver.hohlfeld@b-tu.de

Where networks meet

Based on: M. Wichtlhuber, E. Strehle, D. Kopp, L. Prepens, S. Stegmueller, A. Rubina, C. Dietzel, and O. Hohlfeld. 2022. "IXP Scrubber: Learning from Blackholing traffic for ML-driven DDoS detection at scale". ACM SIGCOMM 2022 Conference (SIGCOMM '22). https://doi.org/10.1145/3544216.3544268

www.de-cix.net

Motivation

Distributed Denial of Service (DDoS)

- Millions of attacks/day globally @14% compound annual growth⁺
- Peak is 3.5 Tbps [53], average is 1 Gbps [63]
- Frequent problem for network operators

Motivation

Distributed Denial of Service (DDoS)

- Millions of attacks/day globally @14% compound annual growth⁺
- Peak is 3.5 Tbps [53], average is 1 Gbps [63]
- Frequent problem for network operators

Mitigation at Internet Exchange Points (IXPs)

- Stopping DDoS at IXPs: <u>2+ AS hops earlier in ~55% of attacks[55]</u>
- Removes stress from the infrastructure, simplifies complex DDoS traffic analysis

Motivation

Distributed Denial of Service (DDoS)

- Millions of attacks/day globally @14% compound annual growth⁺
- Peak is 3.5 Tbps [53], average is 1 Gbps [63]
- Frequent problem for network operators

Mitigation at Internet Exchange Points (IXPs)

- Stopping DDoS at IXPs: <u>2+ AS hops earlier in ~55% of attacks[55]</u>
- Removes stress from the infrastructure, simplifies complex DDoS traffic analysis

<u>Can we build a DDoS mitigation system fitting IXPs' operational requirements?</u>

Operational Requirements

Low cost

• no appliances, needs to work with existing hardware

Low maintenance

 no manual definition of rules and triggers, high degree of automation

Member-driven

• IXP members define what DDoS is and what they want to filter

Controllable

 limit possible damage of false positives, understand performance limitations

Where networks meet

www.de-cix.net

Where networks meet

www.de-cix.net

 IXP members not accepting blackholing routes send <u>unfiltered</u> <u>and unwanted</u> traffic [19]

- IXP members not accepting blackholing routes send <u>unfiltered</u> <u>and unwanted</u> traffic [19]
- Correlate BGP and flow data to
 <u>automatically</u> generate DDoS labels

- IXP members not accepting blackholing routes send <u>unfiltered</u> <u>and unwanted</u> traffic [19]
- Correlate BGP and flow data to
 <u>automatically</u> generate DDoS labels
- → Training set size is only limited by size of BGP/flow data

- Blackholing flows are highly underrepresented in overall flow data export (<<1%)
- We balance by subsampling non-blackholing flows
- Balancing preserves #IPs and #Flows/IP in blackholing/non-blackholing classes
- → Reduces overall raw data by >99%

Balancing Procedure

- Blackholing flows are highly underrepresented in overall flow data export (<<1%) ٠
- We balance by subsampling non-blackholing flows ٠
- Balancing preserves #IPs and #Flows/IP in blackholing/non-blackholing classes •
- Reduces overall raw data by >99% \rightarrow

500

Datasets from Five IXPs

→ ML training set (from BH)

- 685Bn flow records from five IXPs+BGP
 - 3-24 months of data
 - EU and US
 - Up to >800 ASes, up to >10 Tbps traffic
- 202M flow records after balancing

ML pipeline design, training, performance evaluation

Datasets from Five IXPs

→ ML training set (from BH)

- 685Bn flow records from five IXPs+BGP
 - 3-24 months of data
 - EU and US
 - Up to >800 ASes, up to >10 Tbps traffic
- · 202M flow records after balancing

→ Self-attack set (SAS)

- Collected with different method
- Flow records from self-attacks
 - Dedicated infrastructure
 - DDoS-for-hire services [38]
- · 702k flow records

ML pipeline design, training, performance evaluation

Validate models trained on ML training set (reduces risk of bias)

Dataset Validation

Dataset Validation

Dataset Validation

ML-Model: Classification Process

Microscopic ML-model (§ 5.2)

Tag single flows if they are likely part of an attack

→ solves impurity of blackholing data Macrosopic ML-model (§ 5.2) Classify targets into attacked (A) / not attacked (B)

→ if under attack: drop traffic matching tags

ML-Model: Classification Process

Microscopic ML-model (§ 5.2)

Tag single flows if they are likely part of an attack

→ solves impurity of blackholing data

Macrosopic ML-model (§ 5.2)

Classify targets into attacked (A) / not attacked (B)

→ if under attack: drop traffic matching tags

Microscopic Level (flow tagging)

- → Goal: identify blackholing prone flow clusters
 - Association Rule Mining (ARM): "customers buying milk also bought bread."
 - <u>Example</u>: {src_port=389;packet_size=(1400,1500} → {blackhole}

Microscopic Level (flow tagging)

- → Goal: identify blackholing prone flow clusters
 - Association Rule Mining (ARM): "customers buying milk also bought bread."
 - <u>Example</u>: {src_port=389;packet_size=(1400,1500]}, → {blackhole}

\rightarrow Manual curation by experts

Support with UI and by minimizing possible tags

id	T protocol	T port_src	▼ port_dst ▲ ▼ packet_size	confidence	antecedent support T	rule status	notes	T
429ce0cf	17	123	~{0,17,19,21,2 (400,500]	0.97601	0.02598	accept	NTP reflection with typical size to random destination ports (except popular ones).	
152bf00c	17	123	~{0,17,19,22,2 *	0.99136	0.05531	staging ✓	NTP reflection sprayed over arbitrary destination ports.	
91fe9d4a	17	123	~{0,17,19,22,2 (300,400]	0.98893	0.00042	decline staging	NTP reflection attack	
43bc7f62	17	123	~{0,17,19,22,2 (200,300]	0.98588	0.00045	accept	NTP reflection attack	

Microscopic Level (flow tagging)

- → Goal: identify blackholing prone flow clusters
 - Association Rule Mining (ARM): "customers buying milk also bought bread."
 - <u>Example</u>: {src_port=389;packet_size=(1400,1500} → {blackhole}

\rightarrow Manual curation by experts

Support with UI and by minimizing possible tags

id T	protocol T	port_src T	port_dst 🔷 🍸	packet_size T	confidence T	antecedent support T	rule status T	notes	T
429ce0cf	17	123	~{0,17,19,21,2	(400,500]	0.97601	0.02598	accept	NTP reflection with typical size to random destination ports (except popular one	s).
152bf00c	17	123	~{0,17,19,22,2	*	0.99136	0.05531	staging 🗸	NTP reflection sprayed over arbitrary destination ports.	
91fe9d4a	17	123	~{0,17,19,22,2	(300,400]	0.98893	0.00042	decline staging	NTP reflection attack	
43bc7f62	17	123	~{0,17,19,22,2	(200,300]	0.98588	0.00045	accept	NTP reflection attack	
		<u>Stud</u>	dy with r shows o	network	ing exp coach is	erts			

Macroscopic Level (per target)

- → Goal: classify targeted hosts correctly (attack/no attack)
 - Independent of location and locally explainable

Macroscopic Level (per target)

- → <u>Goal</u>: classify targeted hosts correctly (attack/no attack)
- Independent of location and locally explainable
- → Weight of Evidence (WoE) encoding for categoricals [56]
- Likely to appear in blackhole → positive risk score (e.g
- Unlikely to appear in blackhole \rightarrow negative risk score

(e.g., reflector IPs, NTP, SSDP)

(e.g., 8.8.8.8, HTTP)

Macroscopic Level (per target)

- → <u>Goal</u>: classify targeted hosts correctly (attack/no attack)
- Independent of location and locally explainable
- → Weight of Evidence (WoE) encoding for categoricals [56]
- Likely to appear in blackhole \rightarrow positive risk score (e.g., reflector IPs, NTP, SSDP)
- Unlikely to appear in blackhole \rightarrow negative risk score (e.g., 8.8.8.8, HTTP)

General Performance and Retraining

- \rightarrow General performance
 - Evaluation of five optimized ML classifiers on all data
- XGBoost [23] has highest overall performance (F1-score > 0.98)

Where networks meet

Contribution 3: model drift evaluation with up to 2 years of data from 5 IXPs

General Performance and Retraining

\rightarrow General performance

- Evaluation of five optimized ML classifiers on all data
- XGBoost [23] has highest overall performance (F1-score > 0.98)

→ Retraining

- Temporal model drift is a problem
- Daily retraining with sliding window

General Performance and Retraining

\rightarrow General performance

- Evaluation of five optimized ML classifiers on all data
- XGBoost [23] has highest overall performance (F1-score > 0.98)

→ Retraining

- Temporal model drift is a problem
- Daily retraining with sliding window
- Window size hardly affects median, but reduces outliers

Where networks meet

Contribution 3: model drift evaluation with up to 2 years of data from 5 IXPs

Each IXP sees different DDoS vectors and attacking systems (see § 6.4) → WoEs differ geographically and encapsulate local knowledge

Where networks meet

Contribution 3: model drift evaluation with up to 2 years of data from 5 IXPs

Operational Requirements

Low cost

no appliances, needs to work with existing hardware

Low maintenance

 no manual definition of rules and triggers, high degree of automation

Member-driven

• IXP members define what DDoS is and what they want to filter

Controllable

 limit possible damage of false positives, understand performance limitations

Want to know more?

Download

IXP Scrubber: Learning from Blackholing Traffic for ML-Driven DDoS Detection at Scale

Matthias Wichtlhuber¹, Eric Strehle², Daniel Kopp¹, Lars Prepens¹, Stefan Stegmueller¹ Alina Rubina¹, Christoph Dietzel¹, Oliver Hohlfeld² ¹DE-CIX ²Brandenburg University of Technology

ABSTRACT

Distributed Denial of Service (DDoS) attacks are among the most critical cybersecurity threats, jeopardizing the stability of even the largest networks and services. The existing range of mitigation services predominantly filters at the edge of the Internet, thus creating unnecessary burden for network infrastructures. Consequently, we present IXP Scrubber, a Machine Learning (ML) based system for detecting and filtering DDoS traffic at the core of the Internet at Internet Exchange Points (IXPs) which see large volumes and varieties of DDoS. IXP Scrubber continuously learns DDoS traffic properties from neighboring Autonomous Systems (ASes). It utilizes BGP signals to drop traffic for certain routes (blackholing) to sample DDoS and can thus learn new attack vectors without the operator's intervention and on unprecedented amounts of training data. We present three major contributions: i) a method to semi-automatically generate arbitrarily large amounts of labeled DDoS training data from IXPs' sampled packet traces, ii) the novel, controllable, locally explainable and highly precise two-step IXP Scrubber ML model, and iii) an evaluation of the IXP Scrubber ML model, including its temporal and geographical drift, based on data from 5 IXPs covering a time span of up to two years.

CCS CONCEPTS

 $\label{eq:security} \begin{array}{l} \textbf{ security and privacy} \rightarrow \textbf{Denial-of-service attacks; } \textbf{ Networks} \rightarrow \textbf{Wide area networks; } \textit{Network monitoring; } \textit{Public Internet.} \end{array}$

Figure 1: IXP Scrubber applies an ML DDoS classifier at IXPs at the Internet's core and filters DDoS traffic for connected networks. It learns continuously from ASes (A-D) marking unwanted traffic (blackholing).

One of the most prevalent threats to online services to date are DDoS attacks [17, 55, 39, 46, 47, 52, 59]. DDoS attacks aim at consuming more critical resources than available to a service, e.g., network bandwidth, which makes protection against DDoS hard for victims. They are frequent (e.g., thousands of attacks can be observed at certain vantage points every single day [16, 37]), they can be conducted without technical expertise [38], and can generate attack volumes (e.g., of up to 3.5 Tbit/s observed in late 2021 [53])

Paper was published at ACM SIGCOMM'22; available for download from DE-CIX

Thank You for Your attention!

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Where networks meet

www.de-cix.net