Fewer nameservers, more addresses

Dave Knight

RIPE 85 DNS Working Group

Always-on, Ultra Secure.

More nameservers

- Recently launched a second edge DNS platform, UltraDNS2
- UltraDNS users typically have up to 6 Ultra nameservers for a domain, e.g.
 - example.com. IN NS pdns196.ultradns.biz. example.com. IN NS pdns196.ultradns.co.uk. example.com. IN NS pdns196.ultradns.com. example.com. IN NS pdns196.ultradns.org. example.com. IN NS pdns196.ultradns.net. example.com. IN NS pdns196.ultradns.info.
- Users adopting UltraDNS2 add 2 more

example.com. IN NS ns1.ultradns2.com.

example.com. IN NS ns1.ultradns2.org.

Concern that in some TLDs 8 is just too many

- Tweet

@Neustar @NeustarSecurity #neustar #cyberattack
#cybersecurity #infosec #dns

Neustar. Security Services

Introducing UltraDNS²

One Company + Two Networks = The Complete DNS Solution for Your Business

Click here to find out more!

TLD registry delegation size constraints

- How many TLDs allow fewer than 8 nameservers in a delegation?
- It was surprisingly hard to find information on this I
- A public list: <u>https://dm.realtimeregister.com/docs/api/tlds/metadata</u>
- Also got a list from a registrar
- They don't always agree, merged them in favor of the lower limit
- 1595 TLD extensions constrain the number of nameservers in a delegation as follows

13	12	10	9	8	7	6	5	4	3	2
107	4	819	26	63	25	126	245	104	41	35

• 576 / 1595 (36%) of TLD *extensions* don't allow 8 nameservers in a delegation

A simple solution?

Just use fewer nameservers, we do anycast!

- All of the nodes can answer for any nameserver
- You go to the closest node anyway
- Why would we need lots of nameservers?

Our anycast deployment employs varied announcement strategies

- Pursuing a balance between performance and resiliency
- Each node deliberately de-preferences BGP advertisements of the prefixes for some nameservers
- Goal is that no resolver goes to the same node for every nameserver
- We want resolvers to exercise all those strategies
- We want resolvers to use all our IP addresses, do we really care about names?

Can we give fewer nameservers more addresses?

example.com.	NS	ns.ultradns.biz		example.com.	NS	n1.ultradns.com
example.com.	NS	ns.ultradns.net		example.com.	NS	n1.ultradns2.org
example.com.	NS	ns.ultradns2.com				
example.com.	NS	ns.ultradns2.org				
			VS			
ns.ultradns.biz.	Α	192.0.2.1	V J	ns.ultradns.com.	Α	192.0.2.1
	AAAA	2001:db8:1::1			Α	198.51.100.1
ns.ultradns.net.	Α	198.51.100.1			AAAA	2001:db8:1::1
	AAAA	2001:db8:2::1			AAAA	2001:db8:2::1
ns.ultradns2.com.	Α	203.0.113.1				
	AAAA	2001:db8:3::1		ns.ultradns2.org.	Α	203.0.113.1
ns.ultradns2.org.	Α	172.16.0.1			Α	172.16.0.1
	AAAA	2001:db8:4::1			AAAA	2001:db8:3::1
					AAAA	2001:db8:4::1

- Does it work ?
 - Will resolvers use lots of addresses from one name?
 - Do they penalize all the addresses for a name if one of them is bad?

Domain with 2 nameservers with many addresses

daveknight.ca.

ulns.knig.ht. NS NS u2ns.knig.ht.

ulns.knig.ht.

- Two nameservers, one for each of our platforms.
- Each nameserver configured with a list of IP addresses representative of what is announced by each platform.

Α	156.154.34.14
Α	156.154.34.15
Α	156.154.34.16
Α	156.154.34.13
ΑΑΑΑ	2610:a1:3000::13
ΑΑΑΑ	2610:a1:3000::16
ΑΑΑΑ	2610:a1:3000::14
ΑΑΑΑ	2610:a1:3000::15

u2ns.knig.ht. А Δ AAAA ΑΑΑΑ

156.154.34.23 156.154.34.24 2610:a1:3000::23 2610:a1:3000::24

Query some resolvers while breaking things

Configure all IP addresses on a test nameserver

Break one IP address at a time, send 1000 queries to each resolver for ip (.13 .14 .15 .16 ::13 ::14 ::15 ::16 .23 .24 ::23 ::24) disable ip for iteration (0..999) for resolver (bind knot unbound cloudflare google opendns quad9 ultradns) query @resolver {iteration}-{uuid}-{af}-{resolver}.daveknight.ca IN A enable ip

My eyes!!

- Apologies for what follows, I should learn how to visualize data
- The tables of numbers show counts of initial queries to each IP
 - Columns are the nameserver IP address where the query was sent
 - Rows are the broken IP address
- We expect to see a low number of queries to a broken address
 - The nameserver should quickly stop trying to query a broken address
- We want to see it rise again quickly in subsequent rows
 - The nameserver should detect recovery and send queries again
- We don't want blocks of addresses with low numbers of queries
 - The nameserver is grouping the addresses for a nameserver name
- Oh, .13 is an IPv4 address, ::13 is an IPv6 address

BIND9

				u1ns			u2ns			ns				
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	0	0	0	0	108	189	350	148	0	1	114	90	ľ
ips	.14	2	0	0	0	267	177	2	107	0	0	218	227	•
	.15	1	0	0	0	156	302	163	98	0	0	228	52	lf c
	.16	1	0	0	0	59	196	1	321	1	0	212	209	bro
	::13	1	0	0	0	1	0	0	0	0	0	0	998	hig
	::14	1	0	0	0	282	1	0	0	0	0	0	716	ad
	::15	0	0	0	0	510	1	1	0	0	0	0	488	pili
	::16	0	0	0	0	380	53	350	1	0	0	0	216	on
	.23	0	0	0	0	266	119	12	223	0	0	257	123	• (
	.24	2	0	0	0	125	270	67	131	0	0	78	327	á
	::23	1	0	0	0	266	137	356	129	0	0	2	109	ľ
	::24	1	0	0	0	76	234	95	<u>576</u>	0	0	17	1	

 Strongly prefers IPv6

 Weird behavior!
 If one address is broken, penalize all higher numbered addresses until piling onto the last one?

 Slow to get an answer when retrying

Knot Recursor

					ι	ı1ns					u2n	s		
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	6	137	126	127	97	75	93	95	135	107	0	2	
ips	.14	85	4	99	94	75	52	50	47	75	94	169	156	
	.15	121	110	4	119	114	95	73	92	108	112	30	22	
	.16	70	85	83	7	92	86	81	87	78	71	140	120	
	::13	116	102	106	101	6	7	6	5	119	120	164	148	
	::14	115	98	111	115	97	6	76	93	126	120	20	23	
	::15	91	97	89	96	62	62	2	50	98	100	116	137	
	::16	119	119	122	99	109	92	101	8	108	108	0	15	
	.23	92	87	92	37	89	67	87	70	7	87	134	151	
	.24	76	80	90	75	100	81	88	75	63	4	123	145	
	::23	96	91	98	112	94	94	97	100	98	101	2	17	
	::24	83	79	72	98	85	89	111	72	83	58	167	3	

- No significant IP version preference
- Fast to get an answer when retrying
- Doesn't penalize broken addresses for long

Unbound

					u	1ns					u2n	S		
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	4	78	82	88	105	86	97	83	83	95	97	102	
ips	.14	65	4	98	94	100	103	86	91	97	95	81	86	
	.15	97	35	5	101	96	104	94	80	99	109	92	88	
	.16	111	100	0	4	91	112	87	88	89	107	102	109	
	::13	86	102	103	77	1	101	102	91	91	83	85	78	
	::14	116	104	105	125	109	3	0	0	110	116	100	112	
	::15	101	95	114	84	89	94	4	0	95	109	118	97	
	::16	100	124	87	84	92	102	90	5	93	99	49	75	
	.23	104	87	58	42	102	102	97	101	4	99	90	114	
	.24	112	105	98	89	109	106	98	78	0	4	103	98	
	::23	87	102	110	95	118	99	99	90	87	109	4	0	
	::24	84	84	86	75	77	91	99	99	99	92	113	1	

- No significant IP version preference
 Doesn't
 - significantly penalize a broken address

neustar

Security Services

Cloudflare

				u1ns					IS					
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	153	285	234	120	0	0	0	0	78	130	0	0	ľ
ips	.14	82	131	307	145	0	0	0	0	102	233	0	0	
	.15	161	81	158	193	0	0	0	0	181	226	0	0	r
	.16	216	187	106	95	0	0	0	0	183	213	0	0	Ę
	::13	315	235	194	75	0	0	0	0	119	62	0	0	ł
	::14	286	232	235	80	0	0	0	0	84	83	0	0	
	::15	313	248	174	98	0	0	0	0	74	93	0	0	/
	::16	350	241	156	45	0	0	0	0	123	85	0	0	
	.23	232	195	139	53	0	0	0	0	83	298	0	0	ŝ
	.24	261	188	205	63	0	0	0	0	113	169	0	0	
	::23	321	241	168	84	0	0	0	0	119	67	0	0	
	::24	319	210	233	<mark>59</mark>	0	0	0	0	86	93	0	0	

 Strongly refers IPv4

Does an initial retry using the same socket, so higher number of initial queries to broken lps

 Doesn't significantly penalize a broken address

Google

				u1ns						u2ns					
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24		No
broken	.13	72	95	85	73	96	79	82	95	101	67	71	84		ve
ips	.14	80	81	79	85	92	66	78	97	89	94	72	87		pre
	.15	88	63	75	73	109	93	92	86	89	71	80	81		Alv
	.16	73	66	69	63	94	89	88	95	80	95	95	93		the
	::13	66	101	73	72	89	87	81	78	103	94	79	77		ad
	::14	75	87	88	62	101	86	73	83	103	72	90	80		hig
	::15	76	81	65	79	102	90	99	77	89	88	77	77		qu
	::16	67	90	72	81	96	97	84	81	90	82	79	81		bro
	.23	67	61	84	87	118	100	83	90	68	71	91	80		Do
	.24	67	72	87	82	89	87	92	96	67	76	84	101		sig
	::23	65	77	83	82	106	91	96	83	72	76	91	78		pe bro
	::24	72	80	80	83	88	92	105	88	78	79	75	80		bit

No obvious IP version preference
 Always retries

- the broken address once, so higher number of queries to a broken IP
- Doesn't significantly penalize a broken address

OpenDNS

				u1ns			u2ns							
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	0	0	0	0	180	173	168	158	0	0	156	165	
ips	.14	0	0	0	0	166	190	169	150	0	0	162	163	
	.15	0	0	0	0	166	176	163	157	0	0	179	159	
	.16	0	0	0	0	153	185	171	177	0	0	158	156	
	::13	33	36	45	45	61	68	121	187	19	21	186	178	
	::14	50	43	32	35	184	51	79	114	21	30	171	190	
	::15	33	53	39	47	201	192	48	43	23	25	96	200	
	::16	32	34	39	48	174	190	188	50	14	15	40	176	/ 🛒
	.23	0	0	0	0	181	175	165	162	0	0	171	146	
	.24	0	0	0	0	175	161	160	176	0	0	153	175	
	::23	24	32	24	29	188	187	197	171	13	14	53	<mark>68</mark>	
	::24	13	20	14	19	180	152	184	191	6	6	161	54	

Prefers IPv6

Will sometimes
 try IPv4 when an
 IPv6 address is
 broken

 Fast to get an answer when retrying

 Doesn't significantly penalize a broken address

Quad9

					u	1ns					u2n	S		
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	69	199	112	257	0	3	1	23	139	129	49	1	
ips	.14	107	81	138	152	11	44	9	59	165	123	55	19	
	.15	171	82	75	102	15	9	18	51	257	120	56	19	
	.16	235	164	64	71	40	31	58	0	121	168	2	18	
	::13	101	79	140	129	3	0	3	71	210	127	100	0	
	::14	119	80	114	80	157	3	0	40	133	85	134	29	
	::15	137	80	106	88	80	122	5	0	184	108	72	1	
	::16	135	128	103	84	36	15	118	3	219	126	18	0	
	.23	163	193	197	65	14	72	57	26	74	104	10	0	
	.24	94	340	153	102	0	33	68	46	52	73	10	0	
	::23	118	244	122	93	0	7	53	11	202	112	2	2	
	::24	137	287	119	92	0	10	134	26	111	55	10	0	

- Slight IPv4 preference
- Looking at the captures there's much less obvious pattern of behavior than other resolvers.

UltraDNS

					ι	ı1ns					u2n	S		
		.13	.14	.15	.16	::13	::14	::15	::16	.23	.24	::23	::24	
broken	.13	15	101	92	81	86	93	79	109	80	91	88	85	
ips	.14	89	22	104	73	86	83	100	90	91	86	105	70	
	.15	112	100	13	84	96	92	96	82	72	84	95	74	
	.16	104	91	85	14	96	96	103	81	104	64	85	77	
	::13	96	80	79	86	13	96	84	81	93	114	86	92	
	::14	89	102	81	85	85	8	85	89	83	105	100	87	
	::15	89	85	98	92	87	96	6	87	88	95	79	98	
	::16	80	94	83	87	88	91	92	6	91	97	102	89	
	.23	80	95	99	71	77	86	94	93	21	93	109	82	
	.24	95	101	79	75	83	90	96	101	89	19	77	83	
	::23	76	85	89	73	94	102	104	92	86	98	9	92	
	::24	84	90	79	97	91	83	92	100	91	94	91	8	

No obvious IP version preference
Doesn't significantly penalize a broken address

So, does it work?

- Will resolvers use lots of addresses from one name?
 - Address Family biases aside...
 - All resolvers tested use all the addresses!
- Do they penalize all the addresses for a name if one of them is bad?
 - Only BIND9 observed to aggressively penalize any address
 - See no evidence of a resolver penalizing groups of addresses for a name!
- Resolvers use nameserver names to populate a list of IP addresses where they can find authority data, otherwise nameserver names don't matter.
- It works!

Oh, what about glue?

- In my zone I can give a nameserver name many addresses
- Can I do the same in the parent zone?
 - Once more we venture into the perplexing world of registry constraints
- EPP allows "one or more" address attributes on a host record
 What do registries actually allow?
- Tried to add 12 addresses to a host object in a few TLDs
 - CA allows a maximum of 1 address
 - UK allows a maximum of 2 addresses
 - COM allows at least 12 addresses
 - ORG allows at least 12 addresses
- If we're going to have glue, we want it in COM, or ORG (other TLD extensions with a generous policy are probably available)

Optimum configuration

n	s1.fewnamesmanyips.com.

ns1.fewnamesmanyips.org.

fewnamesmanyips.com.	NS NS	ns1.fewnamesmanyips.com. ns1.fewnamesmanyips.org.	
fewnamesmanyips.org.	NS NS	ns1.fewnamesmanyips.com. ns1.fewnamesmanyips.org.	
fewnamesmanyips.ca.	NS	ns1.fewnamesmanyips.com.	

NS

- Announcement strategies
 - UltraDNS has 4
 - UltraDNS2 has 2
 - Want resolvers to exercise 6 x (IPv4+IPv6)
- Care about getting all my addresses into a resolver
 - Give every nameserver EVERY address
 - Resolver gets everything it needs in the first lookup
 - Often as glue in the additional section
- TLD diversity
 - Could theoretically use just one nameserver
 - Don't want all my eggs in one TLD basket
 - Provision nameservers in many TLDs, customers use as appropriate
 - 19 © 2022 Neustar Security Services | All Rights Reserved

Α	156.154.34.13
Α	156.154.34.14
Α	156.154.34.15
Α	156.154.34.16
Α	156.154.34.23
Α	156.154.34.24
ΑΑΑΑ	2610:a1:3004::13
AAAA	2610:a1:3004::14
AAAA	2610:a1:3004::15
AAAA	2610:a1:3004::16
AAAA	2610:a1:3004::23
AAAA	2610:a1:3004::24

ns1.fewnamesmanyips.org.	Α	156.154.34.13
	Α	156.154.34.14
	Α	156.154.34.15
er	Α	156.154.34.16
	Α	156.154.34.23
	Α	156.154.34.24
	AAAA	2610:a1:3004::13
	ΑΑΑΑ	2610:a1:3004::14
	AAAA	2610:a1:3004::15
	AAAA	2610:a1:3004::16
	AAAA	2610:a1:3004::23
s appropriate	ΑΑΑΑ	2610:a1:3004::24

Signed referrals aren't too big

\$ dig +noall +auth +add +stat @a.gtld-servers.net. fewnamesmanyips.com. in ns +dnssec | cut -c1-80

fewnamesmanyips.com.172800	IN	NS	ns1.fewnamesmanyip	s.com.	
fewnamesmanyips.com.172800	IN	NS	ns1.fewnamesmanyip	s.org.	
fewnamesmanyips.com.86400 IN	DS	13512	13 2 322041B3332E9	BF01E6D5424	4F590B8FA0C8A
fewnamesmanyips.com.86400 IN	RRSIG	DS 8	2 86400 20221102152	424 2022102	26141424 5
ns1.fewnamesmanyips.com. 172800	IN	Α	156.154.34.13		
ns1.fewnamesmanyips.com. 172800	IN	Α	156.154.34.14		
ns1.fewnamesmanyips.com. 172800	IN	Α	156.154.34.15	COM	610 bytes
ns1.fewnamesmanyips.com. 172800	IN	Α	156.154.34.16	ORG	
ns1.fewnamesmanyips.com. 172800	IN	A	156.154.34.23	UKG	578 bytes
ns1.fewnamesmanyips.com. 172800	IN	Α	156.154.34.24	CA	331 bytes (no glue)
ns1.fewnamesmanyips.com. 172800	IN	ΑΑΑΑ	2610:a1:3004::13		<u>-</u> , <u>(</u> ,
ns1.fewnamesmanyips.com. 172800		ΑΑΑΑ	2610:a1:3004::14		
ns1.fewnamesmanyips.com. 172800	IN	AAAA	2610:a1:3004::15	When	glue is present
		AAAA	2610:a1:3004::16		
ns1.fewnamesmanyips.com. 172800	IN	AAAA	2610:a1:3004::23	a res	olver gets every
ns1.fewnamesmanyips.com. 172800		ΑΑΑΑ	2610:a1:3004::24	TD i+	will ever need in
;; Query time: 48 msec					
;; SERVER: 192.5.6.30#53(192.5.6	5.30)			the r	eferral.
;; WHEN: Wed Oct 26 20:24:23 CES	-				
;; MSG SIZE rcvd: 610					

Conclusions

- Not proposing a new best practice
 - This seems to be a good workaround for our particular constraints
 - Not everyone needs this
 - It works!
- It doesn't seem to change resolution behavior
 - Slight optimization as fewer queries are needed to learn all IP addresses
- Customers should probably still use more nameservers if they can
 - For TLD diversity
 - Can Just Use Fewer Nameservers when required, with no performance hit!
- It is surprising, this may have impact for monitoring and measurement
 - Tools probably don't all expect to have to walk a list of IP addresses for a name
 - We can adapt our own, but there are many naive tests out there
- Next steps
 - Further experiments trialing this with production domains

Thank you

